


fraction martensite (f) during both uniform and nonuniform flow are described in
detail elsewhere.3 Tension tests were performed on a 30,000-1b-capacity (13,600-kg)
Tinius Olsen testing machine at an imposed strain rate of 0.02 min-!. Uniform
strain was monitored by crosshead displacement, and local strain during the initial
nonuniform flow was determined from travelling calipers which continuously traced
the specimen width profile. The specimen gage section was surrounded by a wire
coil which acted as a reactive element of an LC resonant circuit forming the
frequency-determining part of a transistorized audio oscillator. The oscillator
frequency responded to changes in the average a-c permeability of the specimen,

and thus served to monitor the total martensite content. Extensive calibration ac-
counted for the influence of specimen shape, position of the paramagnetic specimen
grips, and the strain dependence of permeability. Each specimen was individually
calibrated after testing by determining the martensite content in the uniformly
deformed portion of the gage section via density measurements and optical metallog-
raphy. During nonuniform flow, the complete specimen strain profile and measured
total martensite content were used to obtain the average martensite volume fraction
versus average strain in the deforming portion (Luders band) of the specimen.

To test the accuracy of the resulting transformation curves (f versus €), the
transformation curve of the warm-rolled material at room temperature was indepen-
dently determined by measuring the density of the central portion of forming Liders
bands cut from separate specimens strained to various early stages of Liiders band
development. The points thus obtained are compared with the continuous transforma-
tion curve determined from a single specimen by the magnetic technique in Figure 1;
the agreement is quite reasonable. The magnetic technique was then employed to
evaluate the o versus € and f versus € curves at different temperatures by immers-
ing the specimen, coil, and grip assembly in a suitable medium. Temperatures were
controlled within *2 C.
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of TRIP Steels. Army Materials and Mechanics Research Center, AMMRC TR 77-10, March 1977.
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Martensite Morphology

As reported for lower strength Fe-Ni-based TRIP steels,1? the different con-
ditions above and below the MY temperature are accompanied by changes in the mor-
phology of martensite produced during deformation, and this might to some extent
be related to differences in the dominant mechanisms of martensitic nucleation.
Figure 7a shows the microstructure of the solution-treated 0.27C alloy after iso-
thermal transformation at -196 C, and Figures 7b to f show the microstructures
after deformation at increasing temperatures. The martensite formed by deformation
at low temperatures has predominantly the same lenticular plate morphology as the
product of the spontaneous transtormation without external stress. This is consis-
tent with the view that the transtormation mechanism is identical, but thermodynam-
ically assisted by the applied elastic stress. As the temperature of deformation
is increased, these plates become less rvegularly shaped, probably due to some inter-
ference with growth from the increased amount of simultaneous slip in the austenite.
A second feature in the microstructure which finally becomes dominant well above
Mg (Figures 7e and f) arises from small units found predominantly at the intersection
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Figure 7. Morphology of martensites formed in 0.27% carbon TRIP steel solution treated at 1200 C.
(a) Martensite formed by isothermal holding at -196 C for 8 hours without applied stress, (b to f) mar-
tensite formedu by deformation at various temperatures: (b) -196 C, (c) -128 C, (d) -75 C, (e) -28 C,
and (f) 25 C.

19-066-132/AMC-77

10. MAXWELT, P C., GOLDBERG, A, and SHYNLE, 1. €. Srross-Assisted and Strain-Induced Martensites in Fe-Ni-C Alloys. Met.
Trans., v. 5, 1974, p. 1305-1318.




of shear bands in the austenite. These are consistent with the shear-band inter-
section mechanism of strain-7nduced nucleation observed in austenites of low in-
trinsic stacking-fault cncrgy.ll

Figures 8a to f show the microstructure of the warm-rolled material as the test
temperature is increased. Again, deformation at the lowest temperatures produces
fairly coarse plate martensite which becomes finer and less regular as the defor-
mation temperature is raised. This is accompanied by a larger contribution from
the fine shear band intersection morphology (Figures 8c to e). At the highest tem-
peratures, the transformation product is rather finely dispersed and the morphology
poorly defined. This is in part due to the fact that the martensite forms extremely
gradually with plastic strain such that by the time an appreciable quantity of mar-
tensite has been generated, the martensite itcelf is highly deformed. The micro-
structures in Figures 8e and f are taken from the highly deformed necked region of
the tension specimens.

Figure 8. Morphology of martensites formed in 0.27% carbon TRIP steel in warm-rolled (78% RA,
450 C) condition. Martensite formed by deformation at: (a) -196 C, (b) -115 C, (c) 25 C, (d) 60 C,
(e) 100 C, and (f) 150 C.
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11. LECROISEY, F., and PINEAU, A. Martensitic Transformations Induced by Plastic Deformation in the Fe-Ni-Cr-C System. Met.
Trans., v. 3, 1972, p. 387-396.
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Although it is tempting to try to correlate martensite morphology with the
mechanism of nucleation (i.e., Stress-assisted versus strain-induced), the only
clear case in which this is possible occurs when the product is found at shear band
intersections; such intersections clearly represent new nucleation sites induced by
plastic strain. The situation is not as clear for the plate-shaped product produced
by elastic stress at lower temperatures, for even in the spontaneous transformation
without stress the majority of the plates are attributed to autocatalytic nuclea-
tion. A major contribution to autocatalysis is believed to be strain-induced
nucleation resulting from plastic accommodation in the austenite surrounding a form-
ing plate.l? Hence, many of the coarse plates formed below Mg may actually arise
from strain-induced nucleation, though possibly by a mechanism different from the
3 shear-band intersection mechanism which is so important above Mg. Below Mg, then,

' only the very first plates to form, initiating plastic flow and thus determining
the yield stress, can be unambiguously attributed to stress-assisted nucleation
from pre-existing nucleation sites.

Comparison of Figures 7b and 8a reveals an interesting difference in the ar-
rangement of martensite plates formed under conditions where plastic flow is con-
trolled by the transformation. Transformation plasticity, or the macroscopic
strain accompanying martensitic transformation under stress, has generally been
attributed to a biasing of the plastic accommodation processes around a forming
martensite ?late, with only a small contribution from orientation of the plates
themselves.!3 This is based on studies of the transformation from lower strength
austenites in which no obvious biasing of the distribution of plate variants under
. stress is observed. This also appears to be the case for the solution-treated
» material shown in Figure 7b in which the distribution of plates appears as random
as the distribution formed without stress in Figure 7a. The plates formed under
stress in the high-strength TRIP steel of Figure 8a, however, clearly show a pre-
dominance of nearly parallel plates. This stronger biasing of the plate variants
might be attributed to the higher stress levels (~200 ksi or 1400 MPa) required
to induce transformation in the thermomechanically processed TRIP steels. Here,
rather than a small perturbation on the large chemical driving force for transfor-
mation, the orientation-dependent thermodynamic assist of applied stress in this
case may account for a significantly larger fraction of the total driving force.*

Stronger biasing of plate variants in the high-strength TRIP steel suggests
an additional contribution to transformation plasticity which should increase the
i amount of strain per unit of transformation under conditions where transformation
| is the controlling deformation process. This is supported by the initial slopes
; of the f versus e curves in Figures 2, 3, and 4 at the lowest temperatures. The
5 curves for both the 0,19C and 0.27C solution-treated materials reach the same slope -
; corresponding to a true tensile strain of 0.05% per 1% martensite. The curves for
i the high-strength warm-rolled material, however, approach a slope which corresponds
‘ to a larger strain of 0.08 to 0.10% per 1% martensite.

* An additional contribution to the biasing of the plate variants might arise from anisotropy of the dislocation substructure produced
by thermomechanical treatment.

12. KNOROVSKY, G. A. Autocatalysis of Martensitic Transformations. Sc. D. Thesis, Massachusetts Institute of Technology,
Department of Materials Science and Engineering, Cambridge, MA, February 1977.

13. SATTLER, H. P., and WASSERMAN, G. Transformation Plasticity During the Martensitic Transformation of Iron with 30% Ni.
J. Less Common Metals, v, 28, 1972, p. 119.
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Mechanical Behavior

A "rule of mixtures' relation has been proposed to relate the flow stress of
TRIP steels to the deformation-induced martensite content:®

0 = o + fho. (1)

Here o, is the austenite flow stress and Ao is the strength difference between aus-
tenite and martensite. A quantitative test of Equation 1 with the data obtained in
this study would require independent measurement of the o-e behavior of stable aus-
tenite and martensite. However, the o-¢ and f-e curves of Figures 2, 3, and 4 allow
at least a qualitative comparison leading to the behavior depicted schematically

in Figure 9.

Austenite flow properties measured at higher temperatures and martensite flow
properties measured at high strains at lower temperatures in earlier work! suggest
that the o-e curves of stable austenite and martensite in warm-worked TRIP steels
can be reasonably represented by linear work hardening with comparable rates for
both phases. Accordingly, the dotted lines labelled o, and oy in Figure 9 repre-
sent the flow properties of stable austenite and martensite. The sigmoidal trans-
formation curve observed at temperatures above MJ and its associated o-e curve are
denoted by the solid curves in Figure 9a. The dashed o-e curve is the prediction
of Equation 1. As the figure suggests, the curves measured above Mg are in quali-
tative agreement with the rule of mixtures in that the o-e curves possess the same
basic sigmoidal shape as the f-e curves. The o-e curve measured at 60 C for the
warm-rolled material is consistent with the earlier observation! that Liiders-band
formation can arise from a low initial work-hardening rate which need not be accom-
panied by a drop in true stress. A low initial work-hardening rate is predicted
by Equation 1 for a material exhibiting a sigmoidal transformation curve. However,
as the dashed and solid curves of Figure 9a suggest, the data obtained here indicate
an additional contribution to the low initial work-hardening rate which causes the
measured o-e curve to fall below the prediction of Equation 1. This effect can be

Figure 9. Schematic relation of tensile
flow properties and transformation behavior
for high-strength TRIP steel. Dotted lines € €
represent 0-€ behavior of stable austenite e 1-

(o A) and martensite (oM). Solid curves [-
show observed shape of o€ and f-€ curves
of metastable austenite. Dashed curve f f
shows predicted o-€ curve from “rule of
mixtures” (Eq. 1), based on shape of

associated f-€ curve. (a) Behavior of 0 = 0
material at temperatures above M;’ and > € 2
(b) behavior below MP. Rt g (b) T<MS

TR *“M‘“"‘“”AJ



seen by comparison of the o-e curves at 60 C and 100 C in Figure 2. The 100 C
curve can be taken to represent the properties of stable austenite since only a
small amount of martensite is formed at this temperature. Although the 60 C and
100 C curves begin at the same yield stress, the 60 C curve falls below the 100 C
curve when transformation begins. Equation 1 requires that the flow stress of the !
two-phase mixture must always be above that of the stable austenite. Clearly, in |
addition to the basic transformation hardening effect represented by Equation 1, ;
there is a softening phenomenon associated with martensitic transformation during |
deformation.

Although a small effect above Mg

s, ''transformation softening' is a dominant |
factor at temperatures below MY where transformation plasticity becomes the control-

ling deformation mechanism. ﬁlS is particularly so for the higher strength warm-
rolled material as depicted schematically in Figure 9b. Comparison of the solid
and dashed o-e curves shows that a true stress drop is observed where Equation 1
would predict a maximum rate of work hardening. This discrepancy is due to the
basic assumption of Equation 1 that the transforming material, at a given strain,
can be treated as a '"static" two-phase composite material. This does not take into
account the operation of the transformation itself as a deformation mechanism.

When transformation occurs at stresses below g,, the flow stress is the stress re-
quired to maintain an imposed rate of transformation plasticity. The basic shape
of the o-e curve under these conditions can be accounted for with existing models
for the kinetics of isothermal martensitic nucleation. The stress drop on yielding
is an expected result of autocatalytic nucleation which increases the density of
nucleation sites, thus lowering the nucleation frequency required for a given rate
of transformation.* These effects are not strong enough to produce a macroscopic
true stress drop in the lower strength austenites of Figures 3 and 4, but a soft-
ening contribution upon yielding is still evident at the lowest temperatures.
Although the f-e curves become linear, the o-e curves consistently show upward
curvature. Hence, in relating mechanical behavior to the kinetics of martensitic
transformation during deformation, we must consider not only the 'static" effect

of two-phase hardening, but also the ''dynamic'' softening contribution of transfor-
mation plasticity.

Temperature Sensitivity

The plastic strain required to produce a given amount of martensite as a func-
tion of temperature is plotted in Figures 10 and 11 for the 0.27C and 0.19C material.
It is apparent that at M and above, the transformation kinetics are extremely tem-
perature sensitive. The current TRIP steels unfortunately give the best combination
of strength and ductility near Ms and are therefore designed with M near ambient
temperature. In this region of high temperature sensitivity, only a small amount
of adiabatic heating is required to drastically alter the shape of the stress-strain
curve with an attendant serious loss of uniform ductility. This is responsible for
the severe strain-rate effects which can be observed in high-strength TRIP steels.!

As shown best by the high-strength material in Figure 10a, at temperatures be- 1
low M° where flow is controlled by transformatiom plasticity, the temperature sen-
51t1v1ty of the transformation kinetics and associated flow properties is greatly
diminished. If the shape of the stress-strain curve under these conditions could

*OLSON, G. B, and COHEN, M., M.L.T., unpublished research.
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be controlled to give the desired optimum combination of strength and ductility,
TRIP steels designed to operate in this temperature regime should be far more suit-
able for dynamic applications where high strain rates and adiabatic heating effects
f are encountered. It is hoped that progress in understanding the mechanism and ki-
netics of isothermal martensitic nucleation and its interaction with applied stress
will allow the development of this type of TRIP steel, and the full potential of
this unusual class of alloys can then be realized.
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CONCLUSIONS

a. The transformation curves (f versus €) measured with respect to true plas-
tic strain for TRIP steels in both the solution-treated and warm-rolled conditions
have a sigmoidal shape at temperatures above Mg consistent with the behavior of
other metastable austenitic steels. Below Mg, where stress-assisted transformation
becomes the controlling deformation mechanism, the curves approach an initially
linear behavior.

b. Thermomechanical treatment makes the TRIP steel more stable in an absolute
sense as shown by the suppression of the spontaneous transformation on cooling. At
the same time, the alloy is made less stable relative to slip, as attested by the
increase in the Mg temperature and a larger amount of martensite for a given plasti«
true strain.

c. Martensite formed by sgontaneous transformation on cooling and by stress-
assisted transformation below Mg has a plate morphology. Unlike the behavior of
lower strength steels, the distribution of plates in the high-strength thermomechan
ically treated TRIP steel shows a very strong biasing effect of external stress.
The martensite units formed at higher plastic strains are less regularly shaped.
In addition, an increasing contribution from fine units formed at shear band inter-
sections is found at deformation temperatures above Mg where strain-induced nuclea-

tion becomes dominant.

d. A '"rule of mixtures" approach which considers only the 'static'" strengthen:
ing contribution of the transformation product provides a reasonable approximation
for the relation of the deformation-induced transformation kinetics (f versus €)
to the mechanical flow behavior (o versus e€) at temperatures above Mg, although
with less accuracy at the lowest strains. The discrepancy at low strains can be
attributed to a dynamic '"transformation softening' contribution which becomes
dominant below Mg and is due to the operation of transformation plasticity as a
deformation mechanism.

e. The temperature sensitivity of the transformation kinetics with respect
to plastic strain is greatest at temperatures above Mg. If the transformation
kinetics and its relation to flow properties could be properly controlled, the
temperature sensitivity of TRIP steels could be minimized by designing alloys to
operate with optimum mechanical properties below the Mg temperature.
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